We have written the electric field for a plane wave as
\[\vec{E} = E_0 e^{i(kx - \omega t)} \]
or
\[\vec{E} = E_0 \sin(kx - \omega t) \]
so far, we have ignored the fact that \(E_0 \) is a vector's magnitude and direction.

The first effect of polarization we will consider is reflection from a boundary.

\(S \)-polarization \(\Rightarrow \vec{E} \) field polarized \(\perp \) to plane of incidence

\(P \)-polarization \(\Rightarrow \vec{E} \) field \(\parallel \) parallel to plane of incidence
The punch line: "Fresnel Equations"
Where do these come from?

Maxwell's Equations + Boundary conditions

\[\oint \vec{E} \cdot d\vec{l} = \frac{\partial}{\partial t} \oint \vec{B} \cdot d\vec{s} \]

\[\oint \vec{E} \cdot d\vec{l} = E_{\parallel} l_1 + E_{\perp} \frac{l_2}{2} - E_{\parallel} \frac{l_2}{2} - E_{\perp} l_1 + E_{\perp} \frac{l_2}{2} - E_{\parallel} \frac{l_2}{2} \]

\[\oint \vec{E} \cdot d\vec{l} = (E_{\parallel} - E_{\perp}) l_1 = -\frac{\partial}{\partial t} \oint \vec{B} \cdot d\vec{s} \]

\[(E_{\parallel} - E_{\perp}) l_1 = -\frac{\partial}{\partial t} \left(B_1 l_1 + B_2 \frac{l_2}{2} \right) \]

let \(l_2 \) (with or rectangle) → 0
\[
\frac{\partial}{\partial t} (\mathbf{B} \cdot d\mathbf{A}) \to 0
\]

\[
\Rightarrow (E_{1} - E_{3}) \Theta = 0 \quad \text{tangential components of } \mathbf{E} \text{ field continuous.}
\]

It did similar analysis to with Gauss's Law:
\[
\oint \mathbf{E} \cdot d\mathbf{s} = Q_{\text{enc}}
\]

get
\[
\epsilon_{1} E_{1} - \epsilon_{2} E_{2} = 0 \quad \epsilon = n^2
\]

normal components disjointed by

index of refraction \(\leq\) Snell's law

Reflection of Light from boundary depends on index of refraction difference.

Assume non-magnetic material so \(\mu_{i} = \mu_{r} = \mu_{o}\)

\[
\Gamma = \frac{n_{i} \cos \Theta_{i} - n_{r} \cos \Theta_{r}}{n_{i} \cos \Theta_{i} + n_{r} \cos \Theta_{r}}
\]
If \(n_i = n_e \) \(\Rightarrow \) by Snell's law \(n_i \sin \theta_i = n_e \sin \theta_e \)

\(\theta_i = \theta_e \)

\(\Rightarrow \) \(\Gamma_\perp = 0 \) for \(n_i = n_e \)

No reflection unless there is an index mismatch.

What about phase changes upon reflection?

\[
\Gamma_\perp = \frac{n_i \cos \theta_i - n_e \cos \theta_e}{n_i \cos \theta_i + n_e \cos \theta_e} \quad \text{sign of numerator determine } \gamma
\]

\(\Gamma_\perp > 0 \Leftrightarrow \Gamma_\perp < 0 \)

180° phase flip if

\[
n_i \cos \theta_i - n_e \cos \theta_e =
\]

\[
n_i (1 - \sin^2 \theta_i)^{\frac{1}{2}} - n_e (1 - \sin^2 \theta_e)^{\frac{1}{2}}
\]

\[
= n_i (1 - \sin^2 \theta_i)^{\frac{1}{2}} - n_e (1 - \frac{n_i^2 \sin \theta_i}{n_e^2})^{\frac{1}{2}}
\]

\[
= \left(n_i^2 - n_i^2 \sin^2 \theta_i \right)^{\frac{1}{2}} - \left(n_e^2 - n_i^2 \sin^2 \theta_i \right)^{\frac{1}{2}}
\]

\(\Rightarrow \) if \(n_i > n_e \) \(\Rightarrow \) numerator < 0 \(\Rightarrow \) phase flip

\(n_e < n_i \) \(\Rightarrow \) numerator > 0 \(\Rightarrow \) no phase flip
Show animation of Reflection from boundary

Let's plot the Fresnel equations as a function of angle.

(Show Mathcad sheet of Fresnel plots)

Point out Brewster's Angle

\[\tan \Theta_B = \frac{n_e}{n_i} \]

angle at which reflection of parallel component vanishes.

Point about total Internal Reflection

Chapter 8
Chapter 8 - PART 1

\(\vec{E} \) of a light wave is a vector. The direction of \(\vec{E} \) determines its polarization.

So far, we have been working with linearly polarized light.

Example

\[\vec{E} = E_0 \hat{x} e^{i(kz - \omega t)} \]

or

\[\vec{E} = E_0 \hat{x} \cos(kt - \omega t) \]

The above example has \(E \) field polarized in the \(\hat{x} \) direction, with wave propagation in \(z \) direction.

If light is polarized in \(\hat{y} \) direction,

\[\vec{E} = E_0 \hat{y} \sin(kt - \omega t) \]

Light can also be polarized linearly in the \(x-y \) plane.
Why is polarization important?

Example: interference

\[\vec{E}_T = \vec{E}_1 + \vec{E}_2 \]

\[|E_T|^2 = (\vec{E}_1 + \vec{E}_2) \cdot (\vec{E}_1 + \vec{E}_2) \]

\[|E_T|^2 = E_1^2 + E_2^2 + 2 \vec{E}_1 \cdot \vec{E}_2 \]

Interference term.

Interference is zero if \(\vec{E}_1 \) and \(\vec{E}_2 \) are orthogonal.
Circular Polarization

Consider two orthogonal waves

\[\overrightarrow{E_1} = \overrightarrow{E_0} \times \cos(\frac{k_x}{\epsilon_o} - \omega t) \]
\[\overrightarrow{E_2} = \overrightarrow{E_0} \times \sin(\frac{k_y}{\epsilon_o} - \omega t) \]

One can describe \(\overrightarrow{E_T} = \overrightarrow{E_1} + \overrightarrow{E_2} \) either

as two linearly polarized waves with a \(\pi/2 \) phase shift.

Or describe it as circularly polarized light

[Diagram of circularly polarized light]

Tip of \(\overrightarrow{E} \) field traces out a circle as the wave propagates

Use Right hand rule to define

Left + Right hand polarization

[Diagram showing right-handed and left-handed polarizations]

(Show Figures of E field of Linear/Circular Light)
\[\mathbf{E}_R = \mathbf{E}_0 \left(\hat{x} \cos(kz - \omega t) + \hat{y} \sin(kx - \omega t) \right) \]

for left handed

in complex notation

\[\mathbf{E}_R = \frac{\mathbf{E}_0}{\sqrt{2}} (\hat{x} + i \hat{y}) e^{ikz - i\omega t} \]

\[i = \sqrt{-1} \text{ gives } 90^\circ \text{ phase shift.} \]

\[\text{In General, light is elliptically polarized} \]

\[\text{path traced out} \]

by \(\mathbf{E} \) field vector

\[\text{Polarizer} \Rightarrow \text{transmits light with only one polarization state} \Rightarrow \text{eg. Linear polarizing filters} \]

\[\text{transmission axis} \]

\(\text{(pass out polarizing filter)} \)
Law of Malus: \[E_t = E_0 \cos \theta \]

If \(E_0 \perp \) transmission axis

\(\Rightarrow \) all light \(\perp \) blocked

\[P_t = P_0 \cos^2 \theta \quad \text{Since } P \sim E^2 \]

Lab 3: PART 1 \(\Rightarrow \) verify Law of Malus.

Part 2 \(\Rightarrow \) study properties of materials that affect polarization of light

\(\Rightarrow \) BME section \(\Rightarrow \) d-glucose

\(\Rightarrow \) other section \(\Rightarrow \) wave plates (birefringent crystals)
P1: rotate for maximum transmission

P1 then defines polarization state

keep P1 fixed

Then rotate P2. \(P = P_0 \cos^2 \theta \)

angle between P1 and P2

as P1 fixed and P2 rotates.
4.42] Light is \(\perp \) to glass \((n = 1.522)\).

Determine reflectance \(r \) and transmittance \(t \).

Solution: For \(\perp \) incidence, \(\theta_i = 0 \).

From Snell's Law \(n_1 \sin \theta_i = n_2 \sin \theta_e \).

\[\Rightarrow \theta_e = 0 \]

Also, since \(\theta_e = 0 \), \(\parallel \) and \(\perp \) should give same answer.

\[E_\parallel \mid \quad \text{Eq.} 4.432 \quad \Gamma_\parallel = \left(\frac{E_\parallel}{E_\perp} \right) = \frac{n_\parallel \cos \theta_i - n_\perp \cos \theta_e}{n_\parallel \cos \theta_i + n_\perp \sin \theta_i \cos \theta_e} \]

\[M_\parallel = M_\perp = M. \]

\[\Gamma_\parallel = 1 - \frac{1.522}{1 + 1.522} = -\frac{.522}{2.522} = -0.207 \]

Note \[\begin{bmatrix} \Gamma_\parallel \end{bmatrix} \bigg|_{\theta_i = 0} = \begin{bmatrix} \Gamma_{11} \end{bmatrix} \bigg|_{\theta_i = 0} \]

Because of initial direction assumed for \(E \).
\[
\begin{align*}
\tan \theta &= \frac{2 \pi \epsilon_0 \epsilon_r}{\mu_0 \mu_r} \\
&= \frac{2 \pi}{\mu_r + \mu_0} \\
&= \frac{2 \pi}{1.322 + 1} \\
&= 0.793
\end{align*}
\]

Note \(t_\perp + (-t_\parallel) = 1 \) \(0.793 + 0.207 = 1 \)

Generally true that \(t_\perp + (-t_\parallel) = 1 \)

However \(t_\parallel + t_\perp = 1 \) only at normal incidence.

However \(T + R = 1 \) if no absorption or scattering

\[\text{Power, not } E \text{ field} \]

8.4 Write expression for P-state lightwave of angular frequency \(\omega \) and amplitude \(E_0 \) propagating along \(x \)-axis with its plane of vibration 25° relative to the \(xy \) plane. \(E(x=0, t=0) = 0 \).

Solution: P-state \(\Rightarrow \) linearly polarized.

\[\vec{E}(x,t) = E_0 \sin(kx - \omega t) \]

\[\text{propagation along } x \text{ axis,} \]
\[\vec{E}_0 = (\cos 25^\circ) \hat{y} + \sin 25^\circ \hat{k} \]

\[\vec{E}(x,t) = E_0 (\cos 25^\circ \hat{y} + \sin 25^\circ \hat{k}) \sin(kx - wt) \]

Note: \[E(x=0, t=0) = 0. \]

\[\text{incident light "natural light" is unpolarized} \]

Since initial light unpolarized, you loose \(\frac{1}{2} \) the light through first polarizer.

After first polarizer \[P = \frac{P_0}{2} \]

After 2nd polarizer, \(\Rightarrow \) law of malus

\[P = \frac{P_0}{2} \cos^2 \theta \] law of malus.

\(\Rightarrow \) first polarizer \[P = \frac{(400 \text{ W/m}^2 \cos 40^\circ)^2}{\text{Area}} \]

Since light unpolarized \[\frac{P}{\text{Area}} = 117.4 \text{ W/m}^2 \]
If incident light is natural light (unpolarized), compute degree of polarization.

\[
\text{degree of polarization} = \frac{I_{\perp}}{I_{\parallel} + I_{\perp}} = \frac{1/2}{1 + 1/2}
\]

\[
\equiv V = \frac{I_{\perp}}{I_{\parallel} + I_{\perp}} \quad \text{Polarized}
\]

\[
\equiv V = \frac{I_{\parallel}}{I_{\parallel} + I_{\perp}} \quad \text{Natural}
\]

Note initial \(I_{\parallel} = 0 \), no degree of polarization.

Use power reflection coefficient.

\[
P \downarrow = \frac{P_0}{2}
\]

\[
P_{\parallel} = \frac{P_0}{2} \quad \text{Initial power in } \parallel\text{ polarized.}
\]

\[
P_{\perp} = \frac{P_0}{2} \quad \text{Initial power in } \perp\text{ polarized.}
\]

\[
R_{\perp} = \frac{\sin^2(\Theta_i - \Theta_e)}{\sin^2(\Theta_i + \Theta_e)}
\]
First determine \(\Theta_e \)

\[
\eta L \sin \Theta_e = \eta e \sin \Theta_e \]

\[
\sin \Theta_e = \frac{1 \sin 40^\circ}{1.5} \Rightarrow \Theta_e = 25.37^\circ
\]

\[
R_L = \frac{\sin^2 (40 - 25.37)}{\sin^2 (40 + 25.37)} = \frac{0.826(0.638)}{(0.826)}
\]

\[
R_L = 0.0772
\]

\[
R_{||} = \frac{\tan^2 (\Theta_e - \Theta_e)}{\tan^2 (\Theta_e + \Theta_e)} = \frac{0.0681}{0.0143} = 4.75
\]

Note: Equal parts of \(\parallel \) and \(\perp \) polarization correspond to unpolarized natural light.

\[
S_0 = I_e = \frac{P_o}{2} (0.0772 - 0.0143)
\]

\[
I_n = \frac{P_o (0.0143) + \frac{P_o (0.0143)}{2}}{2} \Rightarrow \parallel \text{ contribution} + \perp \text{ contribution}
\]

\[
V = \frac{I_e}{I_e + I_n} = \frac{(0.0772 - 0.0143) \frac{P_o}{2}}{\frac{P_o (0.0772 - 0.0143) + \frac{P_o (0.0143)}{2}}{2}}
\]

\[
= \frac{0.629}{0.915} = 0.687 \Rightarrow 68.7\% \text{ polarized}
\]